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A B S T R A C T

Background: The prediction of Alzheimer’s disease (AD) progression from its early stages is a research priority.
In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years.
However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through
cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions
of the disease, such as variations in brain metabolism assessed via [18F]-fluorodeoxyglucose positron emission
tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI)
who will progress to dementia (pMCI).
Methods: We analyzed data from 1,617 participants from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant
hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The
best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals.
Finally, this model underwent further analysis using eXplainable AI (XAI) techniques.
Results: Our results confirm a strong association between hypometabolism, disease progression, and cognitive
decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training
enhanced the models’ ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the
application of XAI techniques enabled us to delve into the brain regions with the most significant impact on
model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical
structures.
Conclusion: This study introduces a novel dimension to predictive modeling in AD, emphasizing the impor-
tance of projecting variations in brain metabolism under a multi-task learning paradigm.
1. Introduction

Alzheimer’s disease (AD), responsible for 60%–80% of dementia
cases worldwide, remains a pressing concern with far-reaching im-
plications for current healthcare systems (Alzheimer’s and Dementia,
2023). In the United States alone, it is estimated that in 2023, AD
affects 6.7 million people aged over 65 years (Rajan et al., 2021). In
addition, with the progressive aging of the population and the increase
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in life expectancy, it is projected that the prevalence of the disease will
continue to grow (Rajan et al., 2021). All these factors have placed AD
as one of the leading health problems of the 21st century.

Clinically, the typical presentation of AD is characterized by mem-
ory loss, changes in other cognitive functions and behavior, together
with impairment in daily living activities (Peña-Casanova et al., 2012).
These clinical symptoms stem from a cascade of neuropathological
events within the brain. Such alterations include the extracellular
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formation of amyloid-𝛽 plaques and the intracellular aggregation of
phosphorylated tau protein tangles (DeTure and Dickson, 2019). Simul-
taneously, the accumulation of these substrates triggers a neuroinflam-
matory process and disrupts the neurotransmitter systems, resulting in
neuronal loss, atrophy, and synaptic failure, which manifests as the
observed clinical symptoms (Jack, 2022).

In this context, several studies have demonstrated that the spec-
trum of neuropathological events that define the AD landscape ini-
tiates approximately 20 years, or even earlier, before the onset of
clinical symptoms (Thal et al., 2002). Thus, much of the scientific
community efforts have focused on developing biomarkers to detect
the disease at its early stage or predict how it will evolve (Ansart
et al., 2021). These biomarkers are of interest for intervening in mod-
ifiable risk factors, enrolling subjects for clinical trials, studying the
pathophysiological mechanisms of the disease, and addressing aspects
related to the subject’s future planning (Alzheimer’s and Dementia,
2023).

In this context, the growing relevance of Artificial Intelligence
(AI), Machine Learning (ML), and Deep Learning (DL) for modeling
different aspects of AD is well acknowledged. The potential of these
techniques derives from their ability to integrate large amounts of
heterogeneous data and uncover non-linear patterns. While their de-
ployment in the clinical environment is still limited, AI techniques
are promising tools capable of providing valuable information in the
medical decision-making process and biomarker development (Ansart
et al., 2021; Sharma et al., 2023).

Therefore, based on the observed alterations in the brain along the
AD continuum, the neuroimaging domain has become a focal point
for many ML studies. The development of predictive models primar-
ily relies on data derived from structural/functional magnetic reso-
nance imaging (sMRI/fMRI) (Ansart et al., 2021; Sharma et al., 2023)
or positron emission tomography (PET) with radiotracers like flor-
betapir, flortaucipir, or [18F]-fluorodeoxyglucose (FDG), which quan-
tify amyloid, tau protein, and glucose uptake, respectively (Nordberg
et al., 2010). As many studies have shown, the high dimensionality
and complexity of neuroimaging data have encouraged using ML and
DL techniques over classical approaches unable to deal with these
aspects (Arbabshirani et al., 2017).

Among these modalities, sMRI has been the most extensively ex-
plored (Liu et al., 2018; Ghazi et al., 2019; Abrol et al., 2020; Sauty
and Durrleman, 2022). Nevertheless, in recent years, there has been
an increasing interest in integrating information from FDG-PET into AI
models. It stems from its ability to offer a more direct proxy of neuronal
activity by quantifying brain metabolism (Sala and Perani, 2019). As a
result, some diagnostic models have been developed, achieving accura-
cies above 90% in identifying subjects with AD (Katako et al., 2018;
Ding et al., 2019; Díaz-Álvarez et al., 2022; Duan et al., 2023) and
close to 80% for predicting conversion from mild cognitive impairment
(MCI) to AD (Hinrichs et al., 2011; Choi et al., 2018; Iaccarino et al.,
2019). Furthermore, although less frequently, additional aspects of the
disease have been analyzed, encompassing the prediction of cognitive
alterations (Teng et al., 2020; El-Sappagh et al., 2020) and the modeling
of brain atrophy (Marinescu et al., 2020).

Nonetheless, there is a notable gap in exploring additional dimen-
sions of the disease that are of significant interest in clinical practice.
One of these aspects is the variation in cerebral metabolism patterns
along the AD spectrum. Considering the observed alterations in brain
metabolism during AD, it is valuable to anticipate future fluctuations
as they may indicate a worse prognosis for the patient. For example,
several studies have found that reductions in brain metabolism cor-
relate with alterations in different cognitive domains (Landau et al.,
2011; Arenaza-Urquijo et al., 2019) and imply a higher conversion
rate from MCI to dementia (Ou et al., 2019; Alexander et al., 2002).
In this context, the most comparative research on modeling fluctua-
tions using FDG-PET, concentrates on delineating disease-level trajec-
2

tories (Abi Nader et al., 2020).
The primary objective of this study was to model the metabolic
dynamics of the brain across the AD continuum. To this end, we
used DL techniques based on feed-forward networks (FFNs) and con-
volutional neural networks (CNNs). A key aspect of our investigation
involved the use of multi-task learning strategies to simultaneously pre-
dict declines in glucose metabolism and distinguish between different
clinical phenotypes (Zhang and Yang, 2021). Through the integration
of several objectives into the multi-task model, we endeavored to refine
the model’s ability to extract patterns from brain images. This approach
aimed to improve the accuracy of identifying MCI individuals who
are at risk of evolving into dementia. Moreover, the application of
eXplainable AI (XAI) methodologies (Arrieta et al., 2020) was a crucial
component of our study. We utilized XAI techniques to obtain deeper
insights into the models’ decision-making processes. It enabled us to
identify factors linked to future reductions in cerebral metabolism and
disease progression.

2. Methodology

2.1. Study design

This study used FDG-PET images sourced from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, available at (https:
//adni.loni.usc.edu). Initiated in 2003, ADNI represents a collaborative
effort aimed at exploring whether a combination of serial MRI and PET
scans, along with other biomarkers and clinical/neuropsychological
evaluations, can effectively track the progression of MCI and early AD.

The dataset comprises 3449 observations from 1617 participants,
including 438 healthy controls (HC), 858 individuals with MCI, and
321 subjects diagnosed with dementia at their initial evaluation. This
study employed these data across various modeling tasks. Specifically,
for examining changes in brain metabolism (detailed in Section 2.3), we
utilized a subset containing 1166 observations from 674 subjects. This
subset featured individuals with at least two FDG-PET scans conducted
within a two-year span, fitting within a six-month window.

In analyzing the transition from MCI to dementia (outlined in
Section 2.5), we focused on 904 observations from 419 participants
initially diagnosed with MCI, with an additional diagnosis available
after two years. Among these observations, 33.72% were linked to
cases progressing to dementia (pMCI), whereas the remaining 66.28%
pertained to cases that remained stable (sMCI). The clinical and socio-
demographic details of the participants are summarized in Table 1.

2.2. Neuroimaging data

Images that were preprocessed (co-registered and averaged) from
ADNI were downloaded. Comprehensive information on the acquisition
and processing protocols can be accessed at the ADNI website. The
images were further processed using Statistical Parametric Mapping
12 (SPM12) software implemented in Matlab 2020b (MathWroks Inc.).
Images were realigned and normalized to the Montreal Neurological
Institute space using the FDG-PET template presented in Della Rosa
et al. (2014) to voxels of size [2, 2, 2] using a 7th Degree B-Spline
interpolation. Afterwards, spatial smoothing was performed using a
Gaussian kernel with 6 mm full width at half maximum (FWHM). Fi-
nally, standardized uptake value ratios (SUVRs) were computed, using
the whole cerebellum as the reference region (Dukart et al., 2010).

2.3. Analytical approach to brain metabolism decline

A key goal of our investigation was to model the temporal changes
in brain metabolism. We approached this by segmenting brain
metabolism data into regions of interest (ROIs) using the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). For
each ROI, we assigned the average value of its constituent voxels.

We then determined the percentage decrease in the SUVRs across
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Table 1
Clinical and socio-demographic characteristics of the sample used in the study.

Diagnosis Subsample Subjects Observations Sex (%)a Education (years) MMSEb FDGc

All sample All 1617 3449 44.34 16.05 27.14 0.12
BMVd 674 1166 42.88 16.06 27.63 0.25

HC All 438 966 51.60 16.43 29.00 0.62
BMVd 223 398 43.50 16.44 29.11 0.58

MCI

All 858 1689 42.19 16.07 27.77 0.23
BMVd 356 601 42.42 16.13 27.81 0.28
pMCI 81 228 38.27 15.78 26.93 −0.36
sMCI 338 676 42.31 15.91 27.93 0.37

Dementia All 321 794 40.19 15.48 22.94 −0.89
BMVd 85 167 44.71 14.80 22.93 −0.75

a Percentage of females in the sample.
b MMSE, Mini-Mental State Examination.
c Value provided by ADNI consisting of the average standardized glucose uptake ratio value of angular, temporal, and posterior
cingulate. Average values for each group have been presented as z-scores.

d Subset of data that has information on variations in brain metabolism (BMV, brain metabolism variations).
wo measurements separated by two years, as defined by Eq. (1). We
dopted the nomenclature defined in Rolls et al. (2020) to label all the
OIs.

SUVR =
(

SUVR(two-years)

SUVR(baseline) − 1
)

⋅ 100 (1)

When modeling changes in brain metabolism, it is important to
recognize that not all ROIs equally contribute to AD pathology. Certain
regions may show minimal or no metabolic changes due to the disease’s
limited impact there. Our analysis, therefore, prioritized ROIs with
significant associations with AD, focusing on those exhibiting notable
metabolic decrements.

To identify these regions, we conducted a voxel-based morphom-
etry analysis using SPM12. We contrasted brain metabolism between
individuals with dementia and HC using a two-sample t-test, and ad-
justing for both age and average cerebellar metabolism. For each ROI,
the percentage of significantly hypometabolic voxels in the dementia
group was calculated considering a family-wise error-corrected 𝑝-value
less than 0.05. Then, the top 20% of the ROIs with the highest percent-
age of hypometabolic voxels in the dementia group were selected for
further analysis.

Furthermore, we utilized generalized linear models (GLMs) to ex-
plore the impact of metabolic changes in these ROIs on the progression
of the disease. Specifically, we examined their influence on diagnostic
shifts and variations in the Mini-Mental State Examination (MMSE)
scores, adjusting for demographic factors such as age, sex, and educa-
tion levels. Additional insights into the ROI selection process and their
statistical analysis are provided in Appendix A.

2.4. Approach to modeling metabolic variations

For the modeling of variations in brain metabolism, our primary
goal was to approximate ∆SUVR ∈ R𝑛×𝑚 using the function 𝑓 (𝜙(𝐗) ; 𝜽).
Here, ∆SUVR represents the change in SUVR values at 𝑡 = 2 (years)
for 𝑚 ROIs associated with 𝑛 subjects, as described in Section 2.3. The
function 𝜙 denotes a mapping applied to the input data, where 𝐗 ∈
R79× 95× 78 corresponds to the subject’s FDG-PET image at time 𝑡 = 0,
and 𝜽 represents the set of trainable parameters associated with model
𝑓 . In this study, 𝑓 denoted FFNs or CNNs with linear units at the output
layer. For the FFN models, the function 𝜙 (𝜙(FFN) ∶ R79× 95× 78 → R90)
aggregated brain metabolism values within ROIs using the AAL atlas,
excluding the cerebellum (Tzourio-Mazoyer et al., 2002). In the case of
the CNNs, the function 𝜙 (𝜙(CNN) ∶ R79× 95× 78 → R67× 79× 64) resampled
the input image to voxels of size [3, 3, 3] through nearest-neighbor
interpolation, reducing the model’s computational cost. Consequently,
the input data size for FFNs consisted of a vector of 90 variables, while
for CNNs, the input corresponded to a tensor of dimensions [67, 79,
3

64].
The FFN architecture and its hyperparameters were parameterized
and subsequently optimized using a Bayesian optimization (BO) frame-
work employing a tree-structured Parzen estimator (TPE) as a surrogate
model (Bergstra et al., 2011). The open-source library Optuna (Akiba
et al., 2019) was used for hyperparameter optimization (HPO). In the
HPO, the mean absolute error (MAE) obtained on the test set of a
five-fold cross-validation was minimized. Overall, 5000 different con-
figurations sampled under the BO-TPE framework were evaluated by
randomly sampling the first 1000. The optimized FFN hyperparameters
included the number of hidden layers and neurons per layer, the batch
size, the learning rate, the use of batch normalization, and the dropout
rate. For further details on the parameterization of the FFN-based
model, the reader is referred to Appendix B.

On the other hand, given the high computational cost of the CNN-
based models, their architecture and hyperparameters were initially
derived from existing literature and further fine-tuned through em-
pirical adjustments (Springenberg et al., 2014; Wang et al., 2018;
Chen et al., 2021). The final architectural configuration of the CNN-
based models is illustrated in Fig. 1. Additionally, we evaluated the
impact of model complexity, performance, and computational cost of
the scaffold depicted in Fig. 1. For this purpose, we introduced two
models with differing complexities by varying the size of the kernels
and the number of channels. The simplest model (CNN-A1) comprised
a total of 89,479 trainable parameters and 109.061 multiply-accumulate
operations (MACs) for a forward pass, while the more parameterized
model (CNN-A2) featured 276,423 parameters and ∼4 times more
MACs than CNN-A1.

The weights of all models were adjusted through backpropagation,
utilizing the Huber loss with 𝛿 = 2 as the loss function (Eq. (2)), and
optimizing the model weights by Adam with decoupled weight decay
(AdamW) (Loshchilov and Hutter, 2017).

Huber(𝐘, �̂�) = 1
𝑚

𝑚
∑

𝑗=1

1
𝑛

𝑛
∑

𝑖=1
𝐻(𝑌𝑖,𝑗 , 𝑌𝑖,𝑗 ) (2)

where 𝐘 ∈ R𝑛×𝑚 and �̂� ∈ R𝑛×𝑚 represent the actual and predicted
metabolism variations, and 𝐻 corresponds to the piecewise function:

𝐻(𝑦, �̂�) =

{

1
2 ⋅ (𝑦 − �̂�)2, if |𝑦 − �̂�| ≤ 𝛿
𝛿 ⋅ (|𝑦 − �̂�| − 1

2 ⋅ 𝛿), otherwise
(3)

In our experimental setting, the FFN-based models were trained for
a maximum of 500 epochs, while the CNNs were trained for 50 epochs.
The batch size for the CNNs was fixed to 20 due to the high memory
requirements. Additionally, early stopping was implemented for both
models finalizing the training when the value of the loss function
over the validation set did not decrease during 15 consecutive epochs.
Models were evaluated via cross-validation using ten folds, and 15% of
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Fig. 1. Overview of the proposed convolutional neural network (CNN) architecture. The process begins with input images of dimensions [79, 95, 78], which are first resampled
via a function, 𝜙, before passing through several convolutional layers that include instance normalization (InstanceNorm3D) and max pooling (MaxPool3D). The output from these
convolutional layers is then flattened and fed into a feed-forward network (FFN) incorporating multi-task projection layers to predict the variation in brain metabolism across
specific regions of interest (ROIs). Two distinct architectures, CNN-A1 and CNN-A2, were introduced, each varying in complexity and parameterization, with A1 being the less
complex model with fewer parameters, and A2 having a more complex structure with a greater number of parameters.
the training data was used as a validation set. For the FFNs, the data
were standardized to z-scores based on the training set statistics. During
the separation of data into training, validation, and test sets, splits were
performed at the subject level. All the models were developed in Python
(v3.11.5) using the PyTorch (v2.1.1) (Paszke et al., 2019) library.

2.5. Approach to modeling MCI-to-dementia conversion

The second aim of this study was to assess the effectiveness of the
models introduced in the previous section (Section 2.4) in predicting
the conversion from MCI to dementia at two years. To this end, we
parameterized a Bernoulli distribution to model 𝑝(pMCI ∣ 𝜙(𝐗) ; 𝜃). For
this task, we used the binary cross entropy as a loss function, weighting
the positive class to account for class imbalance:

BCE(𝐲, �̂�) = −1
𝑛

𝑛
∑

𝑖=1
𝑤 ⋅ 𝑦𝑖 ⋅ log(𝑦𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦𝑖) (4)

where 𝐲 ∈ R𝑛 and �̂� ∈ R𝑛 denote the true and predicted values, and 𝑤
represents the weighting assigned to the positive class. In our case, we
selected 𝑤 = 4 based on the expected conversion ratio reported in the
literature (Farias et al., 2009).

To address this problem, we implemented the CNN-A1 architecture
(see Fig. 1), which demonstrated superior performance in predict-
ing variations in brain metabolism at two years (see Section 3.2).
Furthermore, leveraging insights from previous studies (Zhang and
Yang, 2021), we introduced and examined the effect of training the
model under a multi-task framework, optimizing several targets simul-
taneously. In this context, beyond predicting pMCI, we incorporated
multiple multi-task layers to predict ∆SUVR, as detailed in Section 2.4,
and to infer the current patient’s diagnosis. For the latter task, we
parameterized the diagnosis as a multinomial distribution by adding
a softmax function, considering three classes (HC/MCI/dementia), and
minimizing the cross-entropy between the model predictions and the
4

ground truth values:

CE(𝐘, �̂�) = −1
𝑛

𝑛
∑

𝑖=1

𝑐
∑

𝑗=1
𝑦𝑖,𝑗 ⋅ log(�̂�𝑖,𝑗 ) (5)

being 𝐘 ∈ R𝑛×𝑐 and �̂� ∈ R𝑛×𝑐 the model predictions associated with
𝑐 = 3 possible classes.

Accordingly, the model trained under the multi-task learning
paradigm underwent training with the same experimental setup de-
tailed in Section 2.4, increasing batch size to 48, and minimizing the
following joint loss function.

Joint = 𝛼𝐵𝐶𝐸 + 𝛽𝐶𝐸 + 𝛾𝐻𝑢𝑏𝑒𝑟 (6)

where the hyperparameters {𝛼, 𝛽, 𝛾} regulate the importance given to
each of the tasks. In this study, we select 𝛼 = 1, 𝛽 = 2, 𝛾 = 0.5,
by balancing the magnitude of the terms in each of the individual
loss functions. In addition, regarding the multi-task model, it must
be considered that not all subjects have all the information (see Sec-
tion 2.1). Therefore, to handle missing values, we applied a mask when
calculating the loss functions for Eqs. (2) and (4). For Eq. (5) this mask
was not necessary since all subjects had information about their current
diagnosis.

2.6. Model interpretability

The quest for understanding DL models, particularly critical in
sectors like healthcare, has underscored the need for robust inter-
pretability techniques (Arrieta et al., 2020). Therefore, to further ex-
plore the impact of the input variables on the model predictions,
we employed the integrated gradients (IG) method. This algorithm,
introduced in Sundararajan et al. (2017), calculates the attributions 𝐴𝑖,
of a given model 𝑓 , and for an input value 𝑥𝑖, based on the straight path
from a reference value 𝑥′𝑖 . The final attributions for the input variable
𝑥𝑖 are determined through Eq. (7):

𝐴𝑖 (𝑥𝑖) = (𝑥𝑖 − 𝑥′) ⋅
1 𝜕𝑓 (𝑥′ + 𝜖 ⋅ (𝑥𝑖 − 𝑥′𝑖)) 𝑑𝜖 (7)
𝑖 ∫𝜖 =0 𝜕𝑥𝑖
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The integral’s computation is approximated using a Riemann sum
over 𝑝 steps within the interval [0, 1].

In our research, the IG method was leveraged to interpret the multi-
task model detailed in Section 2.5. Specifically, attributions were deter-
mined for each target variable, employing a black image as the refer-
ence point. We focused on attributions for changes in brain metabolism
within the designated ROIs, particularly for subjects at the extremes
of the ∆SUVR spectrum — those below the 20th and above the 80th
ercentiles. The goal was to discern model behavior in cases of signif-
cant metabolic decline versus relative stability (Oh et al., 2019). This
nalysis extended to evaluating attributions for predicting pMCI and
MCI phenotypes, as well as for the task of classifying current diagnosis,
mphasizing comparisons between HC and dementia cases.

Utilizing the Captum library (Kokhlikyan et al., 2020) for IG im-
lementation, we computed and averaged attributions across the test
ets derived from a ten-fold cross-validation, focusing on the abso-
ute values to capture overall influence rather than directional im-
act. This approach facilitated a nuanced understanding of the model’s
ecision-making process, particularly highlighting the input features’
ignificance across different prediction tasks and clinical conditions.

. Results

.1. Identification of the Alzheimer’s disease-related brain regions

Our analysis identified fifteen ROIs representing the top 20% of ar-
as exhibiting the most significant hypometabolism in AD. The selected
OIs are presented in Table 2. These ROIs, predominantly localized
ithin the temporal lobe, include the left and right parahippocampal
yri (PHF L/R), the left and right hippocampus (HPO L/R), the left
nd right inferior temporal gyri (ITG L/R), the left middle temporal
yrus (MTG L), and the left temporal pole of the middle temporal gyrus
TPOmid L). Furthermore, regions in the parietal lobe, such as the left
nd right angular gyri (ANG L/R), the left and right inferior parietal
obules (IPG L/R), and the left and right posterior cingulate gyri (PCC
/R), along with a subcortical area, the left caudate nucleus (CAU L),
ere identified for their pronounced metabolic alterations in AD (Rolls
t al., 2020).

Significant differences in SUVRs among the selected ROIs were
bserved across different diagnostic groups at baseline evaluation.
ubjects diagnosed as HC typically showed higher SUVRs, indicating
elatively healthy brain metabolism. Conversely, individuals diagnosed
ith MCI displayed a decline in metabolism, with the lowest SUVRs
bserved in those diagnosed with dementia. Importantly, longitudinal
nalysis revealed that metabolic changes in these ROIs over a two-
ear period were statistically associated with an increased risk of MCI
rogression to dementia, as well as reductions in MMSE scores (detailed
n Table 2). For comprehensive insights into the methodology and
indings, readers are directed to Appendix A.

.2. Predictive performance for two-year metabolic changes

This study developed models employing FFNs and CNNs to predict
hanges in brain metabolism at two years across key ROIs pertinent to
D, as outlined in Section 2.4. The architecture and hyperparameters of

he FFNs-based model were optimized using a BO-TPE framework. The
ptimal FFN architecture comprised a 4-layer network with 250, 174,
00, and 75 neurons respectively, applying dropout rates of 0.15, 0.1,
.05, and 0.00 for each layer, leveraging the ReLU activation function,
nd incorporating batch normalization with a batch size of 32. Overall,
he FFN-based model had 121,790 trainable parameters.

Comparative analysis revealed that CNN-based models outperfo-
med the optimized FFN model in predicting metabolic changes. Specif-
cally, the CNN-A1 architecture demonstrated superior predictive accu-
acy, evidenced by an average Pearson correlation coefficient of 0.383
cross the test set. This model achieved a MAE of 3.531 and an average
5

Table 2
Analysis of brain standardized uptake value ratios (SUVRs) of the selected regions of
interest (ROIs) relative to patient diagnosis, disease progression, and changes in the
Mini-Mental State Examination (MMSE).

ROI HC vs. Dementiaa Disease progressionb MMSE changesc

Z-statistic p-value Z-statistic p-value Z-statistic p-value

ITG (L) −20.291 <0.001* −3.562 <0.001* 4.836 <0.001*
PHG (L) −19.203 <0.001* −3.572 <0.001* 3.305 0.001*
TPOmid (L) −13.937 <0.001* −2.220 0.026* 2.547 0.011*
CAU (L) −11.765 <0.001* −3.019 0.003* 5.162 <0.001*
PCC (L) −21.317 <0.001* −2.712 0.007* 4.232 <0.001*
PHG (R) −14.888 <0.001* −2.174 0.030* 2.597 0.009*
ITG (R) −16.567 <0.001* −3.102 0.002* 4.861 <0.001*
IPG (L) −15.050 <0.001* −2.301 0.021* 3.653 <0.001*
ANG (L) −21.685 <0.001* −3.647 <0.001* 4.829 <0.001*
HIP (L) −16.078 <0.001* −2.279 0.023* 1.929 0.054
MTG (L) −16.779 <0.001* −2.255 0.024* 3.832 <0.001*
HIP (R) −14.555 <0.001* −1.971 0.049* 1.368 0.171
ANG (R) −19.186 <0.001* −3.452 0.001* 4.165 <0.001*
IPG (R) −14.099 <0.001* −1.884 0.060 3.219 0.001*
PCC (R) −16.667 <0.001* −2.391 0.017* 2.701 0.007*

* Statistically significant value (p-value < 0.05).
a Comparison of baseline SUVRs of healthy controls (HC) and subjects with dementia
adjusting for age, sex, and years of formal education.
b Comparison of ∆SUVR (see Section 2.3) between individuals with mild cognitive
impairment progressing to dementia (pMCI) and individuals who remain stable (sMCI)
adjusting for age, sex, and educational level.
c Analysis of the association between ∆SUVR (see Section 2.3) and variations in the
MMSE defined as (MMSE(2-years)−MMSE(baseline)). Values adjusted for age, sex, and years
f education.

Table 3
Performance of the CNN-A1 model for predicting brain metabolism changes at two
years stratified by brain region. Results reflect the average performance obtained on
the test from a ten-fold cross-validation.

ROI Correlation MAE RMSE EV (%)

ITG (L) 0.447 2.994 3.866 19.489
PHG (L) 0.408 2.649 3.558 16.705
TPOmid (L) 0.404 2.768 3.544 16.745
CAU (L) 0.403 3.115 4.086 15.926
PCC (L) 0.397 3.480 4.589 15.053
PHG (R) 0.392 2.772 3.754 15.580
ITG (R) 0.382 3.291 4.262 13.718
IPG (L) 0.380 4.639 6.191 13.908
ANG (L) 0.377 4.822 6.384 13.849
HIP (L) 0.375 2.955 4.065 14.139
MTG (L) 0.375 3.432 4.476 13.752
HIP (R) 0.366 3.073 4.123 13.416
ANG (R) 0.365 4.856 6.354 12.386
IPG (R) 0.340 5.040 6.597 11.073
PCC (R) 0.339 3.090 4.128 10.081

Total 0.383 3.532 4.665 14.388

Abbreviations: ROI, region of interest; MAE, mean absolute error; RMSE, root mean
squared error; EV, explained variance.

explained variance (EV) of 14.388%. In comparison, the FFN model
registered a lower correlation coefficient of 0.294, a MAE of 3.681,
and an EV of 5.300%. The CNN-A2 model, while offering competitive
performance, yielded correlation, MAE, and EV values of 0.365, 3.594,
and 12.180%, respectively.

For the model CNN-A1, the regions with the most EV were ITG (L),
PHG (L), TPOmid (L), CAU (L), PCC (L), and PHG (R), with values
above 15% and a correlation around 0.40. In contrast, the areas with
the greatest discrepancy with the model predictions were IPG (R) and
PCC (R) with EVs of around 10% and correlations below 0.35. Finally,
for ITG (R), IPG (L), ANG (L), HIP (L), MTG (L), HIP (R), and ANG (R),
the EVs were in the range of 12%–15% with correlations ranging from
0.365 to 0.382 (see Table 3).
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Fig. 2. Convergence of the multi-task model described in Section 2.5. The figure shows the average convergence values during training over the different folds for the (a) joint loss,
and the components associated with (b) the modeling of the progression from mild cognitive impairment to dementia, (c) the prediction of two-year changes in brain metabolism,
and (d) the prediction of the patient’s current diagnosis.
3.3. Predicting MCI progression to dementia

As described in Section 2.5, our work successfully adapted the
CNN-A1 architecture, initially optimized for modeling changes in brain
metabolism, to distinguish between individuals with MCI that remain
stable (sMCI) and those progressing to dementia (pMCI) within two
years. Additionally, besides training the CNN-A1 model with the exist-
ing conversion data from 904 observations, a model was fitted under
the multi-task paradigm (CNN-A1 multi-task), minimizing the joint
loss function outlined in Eq. (6), by leveraging information from all
observations. The convergence of the multi-task model is illustrated in
Fig. 2.

The standalone CNN-A1 model yielded an F1-score of 0.628, demon-
strating a specificity of 0.799 and a sensitivity of 0.756 for identifying
pMCI cases. The introduction of the multi-task learning framework
significantly improved these metrics, achieving an F1-score of 0.783,
with enhanced specificity (0.869) and sensitivity (0.884). Notably, the
multi-task model exhibited reduced variance across different folds of
cross-validation, indicating a more robust and consistent performance
(as illustrated in Fig. 3).

The evaluation of both models through receiver operating char-
acteristic (ROC) curves, shown in Fig. 4, revealed that the CNN-A1
model achieved an area under the ROC curve (AUC) of 0.83. The multi-
task model, however, outperformed this with a higher AUC of 0.92,
showcasing its superior predictive capability in identifying MCI patients
at risk of progressing to dementia.

For the objectives of the multi-task model, including current diagno-
sis classification, the model reached an average macro and micro AUC
of 0.841 and 0.856, respectively, with corresponding F1-macro/micro
scores of 0.676 and 0.670. The model demonstrated a high degree of
accuracy in distinguishing between HC and dementia cases, with only
minimal misclassification rates between HC and MCI, and between MCI
and dementia. Specifically, the model achieved remarkable F1-scores
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when differentiating HC from dementia (F1-score of 0.956), HC from
MCI (F1-score of 0.731), and MCI from dementia (F1-score of 0.782),
indicating its effectiveness across various diagnostic distinctions.

In terms of predicting two-year changes in brain metabolism, a
slight increase in the MAE was observed, moving from 3.531 (as
reported in Section 3.2) to 3.601. This increment, while modest, under-
scores the challenge of balancing predictive accuracy across multiple
tasks within a multi-task learning framework.

3.4. Interpretation of model attributions through integrated gradients

The model attributions for each of the modeled tasks were analyzed
using the IG method, as outlined in Section 2.6. In identifying pMCI
individuals, the model assigned the highest importance to the PCC
(L/R), along with the left putamen (PUT L) and pallidum (PAL L)
(see Fig. 5). These same four brain regions also exhibited the highest
importance in predicting ∆SUVR and inferring the patient’s current
diagnosis (see Fig. 6).

Additional regions that received high attributions for pMCI clas-
sification included the left and right thalamus (THA L/R), PAL (R),
left inferior frontal gyrus opercular/orbitalis parts (IFGoper/IFGorb
L), left middle cingulate gyrus (MCC L), left cuneus and precuneus
(CUN/PCUN L), HIP (L), and left superior occipital gyrus (SOG L).

Consistency in attributions was observed across the tasks. For pre-
dicting ∆SUVR, regions like the THA L, PAL R, CUN L, PCUN L, the left
angular gyrus (ANG L), the left lingual gyrus (LIN L), IFGoper L, IFGorb
L, and MCC L/R emerged as significant. In the context of diagnosing
the patient’s current condition, notable regions included the THA L/R,
PAL R, CUN L, HIP L, PCUN L, LIN L, MCC L, IFGoper L, and the left
amygdala (AMYG L).

These findings underscore the model’s reliance on a combination
of subcortical structures, limbic regions, and cortical areas involved in
memory, executive function, and sensory processing for making predic-
tions related to AD progression. The consistency across tasks highlights
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Fig. 3. Confusion matrices associated with the classification of individuals with mild cognitive impairment who will progress to dementia (pMCI) or remain stable (sMCI) over
two years. The values denote the average and standard deviation of each of the ten-fold cross-validation folds. These results correspond to the models defined in Section 2.5.
Fig. 4. Receiver operating characteristic (ROC) curves for models developed to identify
mild cognitive impairment individuals that will progress to dementia (pMCI) at two
years. Average values obtained by ten-fold cross-validation are shown. Abbreviations:
AUC, area under the ROC curve.

the interconnectedness of these brain regions in the pathology of AD,
reflecting their relevance in both the disease’s progression and its
impact on brain metabolism.

For detailed insights into the specific attributions across the various
tasks and their implications, readers are directed to Appendix C.

4. Discussion

This study introduces a novel framework for the development of
predictive models in AD, demonstrating the feasibility of modeling
changes in brain metabolism. These models significantly enhance the
identification of individuals with MCI progressing to dementia. Addi-
tionally, the incorporation of XAI techniques deepened our understand-
ing of the decision-making processes, improving model debugging and
reliability. To the best of our knowledge, this is the first study that
employs DL techniques to model variations in brain metabolism and
leverages this knowledge to identify pMCI individuals.

A primary aim of this study was to predict the evolution of brain
metabolism as AD progresses. Notably, within the short timeframe
examined, the majority of brain regions exhibit only subtle changes.
To streamline the complexity of our analysis and focus on the most
relevant data, we selectively targeted several ROIs known for their
7

relevance to AD. This selection process was informed by empirical
evidence and focused on areas extensively documented in AD research,
including the hippocampus, parahippocampal gyrus, posterior cingu-
late gyrus (Fjell et al., 2014; Scheef et al., 2012; Leech and Sharp,
2014; Buckner et al., 2005), angular gyrus (Jagust et al., 2006; Smith
et al., 2007), medial and inferior temporal regions (McEvoy et al.,
2011; Mosconi et al., 2008; McEvoy et al., 2009), inferior parietal
gyrus (Crone et al., 2006; Wang et al., 2015), and the left caudate
nucleus (Madsen et al., 2010; Jiji et al., 2013). A comprehensive
overview of these selected ROIs is provided in Table 2.

Following the identification of key ROIs linked to AD, we employed
traditional statistical methodologies to explore the correlation between
these ROIs and the progression of AD. Our findings revealed significant
associations between declines in FDG-PET, changes in diagnosis, and re-
ductions in the MMSE over two years. These outcomes align with prior
research (Landau et al., 2011; Arenaza-Urquijo et al., 2019; Ou et al.,
2019; Alexander et al., 2002), confirming the relationship between
metabolic decreases and cognitive deterioration. For instance, research
by Ou et al. (2019) showed that individuals experiencing a drop in
FDG-PET metabolism underwent more pronounced cognitive decline
and brain atrophy. Similarly, a study by Alexander et al. (2002) docu-
mented significant metabolic slowdowns in the parietal, temporal, and
cingulate cortex over a year-long observation. Further studies (Arenaza-
Urquijo et al., 2019; Landau et al., 2011) have consistently highlighted
the link between metabolic changes and declines in neuropsychological
test performances, positing glucose uptake as a predictive marker of
AD’s cognitive trajectory. Together, these results emphasize the clinical
relevance of tracking metabolic shifts within specific ROIs, suggesting
that such changes could herald a poorer prognosis. Moreover, this re-
search sheds light on the critical brain regions affected over the course
of AD, providing valuable insights into the disease’s pathophysiological
evolution.

Building upon the identified ROIs, we utilized DL methodologies to
forecast the changes in their SUVRs over a two-year timeframe. The
evaluation of our models through cross-validation revealed that the
CNN-based model performed optimally, achieving a moderate correla-
tion of 0.38 with the actual metabolic changes. This model registered
a MAE of 3.53 and an average EV of 14.39%. The range of metabolic
variations observed in our dataset spanned from −12.78 to 7.80, with
these values representing the 2.5% and 97.5% percentiles, respectively.
Such findings denote a moderate level of predictive accuracy, with
an error margin of 17.15% covering 95% of the observed changes.
In this context, our research stands out in the field, as to date, there
exists only one study that endeavored to model variations in brain
metabolism (Abi Nader et al., 2020). Abi-Nader et al. introduced a gen-
erative model aimed at predicting temporal shifts in brain metabolism
through matrix factorization of 3D volumetric data. Nevertheless, their
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Fig. 5. Attributions of the multi-task model described in Section 2.5 for identifying individuals with mild cognitive impairment (MCI) who progress to dementia within two years
(pMCI). A total of 228 images associated with 81 pMCI individuals were used to calculate the attributions. Regions with the highest attributions include the left and right posterior
cingulate, left putamen, left and right pallidum, left and right thalamus, and left cuneus and precuneus.

Fig. 6. The figure displays the attributions given to each modeled task (Y-axis), by grouping the values into regions of interest (ROIs) using the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002). For visualization, the six ROIs with the highest attributions were represented. In the figure on the left, cases exhibiting the most
significant decreases in ∆SUVR, progressive mild cognitive impairment (pMCI), or dementia individuals were utilized as input. In figure on the right, attributions were computed
for instances with the highest ∆SUVR, stable MCI (sMCI), or healthy controls (HC). Attributions were scaled to the interval [0, 1]. Abbreviations: PCC, posterior cingulate cortex;
PUT, putamen; PAL, pallidum; THA, thalamus; CUN, cuneus; PCUN, precuneus.
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model suffers from significant constraints, including the assumption of
a monotonic disease progression, and it falls short of providing the level
of interpretability our DL approach offers.

Furthermore, our results distinctly highlight the advantage of CNN-
based models over FFNs in accurately predicting metabolic changes
in the brain. This superiority can be ascribed to a number of critical
reasons. Firstly, the aggregation of brain metabolism information into
ROIs, relying on the average value of the voxels within each region,
leads to a significant loss of information, as it ignores the subtle details
present in the images. For instance, in a ROI encompassing a large brain
volume, metabolism reductions within a specific part of the region may
be smoothed out when considering the average value of all its voxels.
Secondly, unlike FFNs, CNN models leverage the spatial dimension
of the input data, capturing semantic relationships among different
brain regions. This spatial awareness empowers CNNs to extract more
intricate patterns from the images than a naive FFN (Ren et al., 2019).
These aspects are fundamental in elucidating the observed superiority
of CNNs in our analysis.

On the other hand, the accurate identification of individuals with
pMCI remains a pivotal challenge in AD research (Ansart et al., 2021;
Sharma et al., 2023). Given the established links between metabolic
changes in the brain and the progression of AD, we delved into the
potential of incorporating 𝛥SUVR information to enhance the prediction
f pMCI cases. To achieve this, we crafted multi-task models leveraging
he strengths of CNNs, which showed superior capabilities in forecast-
ng 𝛥SUVR. These models were tasked with simultaneously estimating
ariations in SUVRs, predicting the current diagnosis, and determining
he likelihood of progression from MCI to dementia.

Our findings reveal that adopting a multi-task strategy markedly
mproves the accuracy in the identification of pMCI subjects. In direct
omparison to a singularly focused pMCI prediction model, the multi-
ask model’s specificity and sensitivity reached 88.40% and 86.91%,
espectively, from the initial 75.64% and 79.98%. Moreover, this ap-
roach significantly stabilized the variability across different folds,
ndicating a robust enhancement in model reliability. This level of
erformance mirrors advancements made by other research endeavors.
or example, Abrol et al. (2020) crafted a multi-task model that utilized
ulti-modal data to predict pMCI, achieving an AUC of 0.925, compa-

able to that obtained in this work. Lee et al. (2019) also reported a
otable AUC of 0.86, thanks to their integration of multi-modal data in-
luding MRI scans, cerebrospinal fluid data, and cognitive assessments.
hese outcomes are consistent with findings from additional studies
ithin the field, showcasing the effectiveness of such models (Moradi
t al., 2015; El-Sappagh et al., 2020). Our results not only corroborate
he prevailing trends in AD research but also underscore the value
f multi-task learning frameworks in developing more nuanced and
ccurate predictive models (Zhang et al., 2012; El-Sappagh et al., 2020;
brol et al., 2020; Zhang and Yang, 2021).

In relation to the very competitive results of the multi-task models,
e hypothesize that this improvement was due to several reasons. First
nd foremost, the dataset did not uniformly cover all the targeted
ariables for every subject. The multi-task learning framework, by
ccommodating a broader spectrum of training examples, significantly
nhanced the capacity for generating rich, meaningful hidden represen-
ations within the models. Furthermore, the delineation between sMCI
nd pMCI is demarcated by a rigid boundary, which may be swayed by
variety of factors, including cognitive reserve, demographic traits, or
iagnostic practices. This nuance suggests that a patient’s classification
s either MCI or dementia – and subsequently as sMCI or pMCI – can
ometimes hinge on subtle distinctions in their cognitive assessment,
ituating them on a fine line between these diagnostic categories.
raditional models that categorize MCI status in a binary fashion
ight not capture the depth of a patient’s cognitive state. In contrast,

ur approach of concurrently modeling multiple outcomes offers a
omprehensive snapshot of a patient’s condition, thereby potentially
9

elevating the model’s predictive performance. Lastly, an integral advan-
tage of multi-task learning is its inherent function as a regularization
technique. This property compels the model to develop more univer-
sally applicable internal representations, which, in turn, minimizes the
likelihood of overfitting (Zhang and Yang, 2021). Collectively, these
factors underscore the multi-task approach’s efficacy in refining model
predictions.

Finally, recent research has evidenced the effectiveness of XAI tech-
niques in enhancing the understanding of model decisions and boosting
their reliability (Arrieta et al., 2020). Within the realm of AD neu-
roimaging, XAI methodologies have increasingly become a staple, fa-
cilitating deeper insights and broader acceptance of model outputs (Oh
et al., 2019; Ding et al., 2019; Pohl et al., 2021). Embracing this
trend, we integrated the XAI framework into our study to probe deeper
into the factors most critically impacting our model’s predictions. To
achieve this, we employed the IG method to compute attributions
within our multi-task modeling approach.

We found that the IG method assigned more importance to typical
AD-related regions such as the cingulate cortex and hippocampus, some
subcortical structures, parts of the parietal cortex, and, to a lesser ex-
tent, some occipital and frontal areas (see Section 3.4). This alignment
with well-documented AD research underscores the method’s utility in
interpreting complex model behaviors. For example, previous research
has highlighted the elevated connectivity and metabolic activity of the
cingulate cortex, along with its alterations in AD (Leech and Sharp,
2014). Similarly, reduced metabolic activity in the precuneus has been
recognized as an early indicator of AD (Scheef et al., 2012), and other
research groups have also discussed alterations in the hypothalamus
and thalamus (Wang et al., 2006; Fjell et al., 2014; Dai et al., 2015).
Moreover, hypometabolism in the occipital and frontal cortex has been
documented in more advanced stages of the disease, which potentially
explains their inclusion among regions with high attribution (Fjell
et al., 2014). Nevertheless, the association with AD was less evident
for other areas, such as the putamen or pallidum, which have a minor
impact on the disease. In this case, we hypothesize that the model
may be capturing nonlinear interactions of these regions with other
areas, which were difficult to explain. Nonetheless, we observed the
emergence of regions directly implicated in the disease, providing
insights into the dynamics of the model.

Collectively, this research offers evidence underscoring the signif-
icance of modeling variations in brain metabolism during AD. The
findings indicate the feasibility of projecting brain metabolism varia-
tions along the AD continuum using DL techniques. So far, most work
has focused on differentiating clinical phenotypes (Ghazi et al., 2019;
Liu et al., 2018; Abrol et al., 2020; Katako et al., 2018; Ding et al.,
2019), predicting cognitive decline (Choi et al., 2018; Iaccarino et al.,
2019; Lei et al., 2020; Bhagwat et al., 2018), or forecasting brain
atrophy progression (Bône et al., 2018; Marinescu et al., 2020; Sauty
and Durrleman, 2022). In this context, predicting the evolution of brain
metabolism introduces a novel dimension for developing models in
neurodegenerative diseases. This information holds great interest for a
potential translation into clinical practice. For instance, in cases where
there is an expected decline in brain metabolism, the subject will likely
have a poorer prognosis, as supported by our results and previous stud-
ies indicating that such changes serve as a reliable indicator of cognitive
decline (Landau et al., 2011; Arenaza-Urquijo et al., 2019; Ou et al.,
2019; Alexander et al., 2002). Therefore, all the information that can be
estimated for a given subject, including variations in the SUVR values,
becomes relevant for investigating the pathophysiological mechanisms
of the disease, developing clinical trials, evaluating disease-modifying
therapies, and implementing personalized treatments (Mintun et al.,
2021).

Furthermore, this study provides evidence that modeling SUVR val-
ues improves performance on other tasks, including the identification
of sMCI and pMCI individuals. This finding is significant, as numerous

researchers have reported that modeling diverse complementary tasks
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– such as simultaneously predicting clinical phenotypes and cognitive
scores – enhances the overall generalization capacity of the models (El-
Sappagh et al., 2020; Abrol et al., 2020). Accordingly, this research
provides a further pretext for developing models under the multi-
task learning framework, indicating the importance of including the
prediction of future SUVR values as one of the modeling objectives.
Moreover, by introducing XAI techniques, our study showed that it
is possible to analyze model predictions, extracting useful information
about brain regions that may be of great interest within the pathology.

While this study presents significant advancements, it is not without
its limitations. Primarily, the predictive accuracy for changes in brain
metabolism is moderate. Future investigations could benefit from em-
ploying more sophisticated models that leverage a broader dataset and
multi-modal data to enhance predictive performance (Lee et al., 2019;
Abrol et al., 2020; Choi et al., 2018). Additionally, akin to many studies
utilizing the ADNI database, our analysis is limited by its reliance on
a relatively narrow cohort (Samper-González et al., 2017), highlight-
ing the necessity for further studies to examine the scalability and
applicability of our analytical framework across diverse populations.
Another notable challenge is the substantial computational demand
of the CNNs deployed. Subsequent research should investigate more
computationally efficient models that can still effectively harness the
spatial data present in brain images. In this vein, graph neural networks
emerge as a potentially valuable avenue for exploration. Furthermore,
our models predominantly rely on data from a singular time point
to forecast biennial changes. The incorporation of longitudinal data,
capturing the progression of subjects over time, stands as a crucial
area for future research, promising to refine and possibly enhance the
predictive capabilities of our models.

5. Conclusion

In conclusion, we modeled the dynamic shifts in brain metabolism
in AD using multi-task DL models incorporating XAI techniques. Our
results demonstrated accurate predictions of metabolic changes and
clinical progression from MCI to dementia. Our findings emphasize the
relevance of FDG-PET as a biomarker to monitor disease progression
and detect patients at high risk of progression to dementia. Overall, this
study provides a foundation for future research focused on exploring
this new dimension of the disease.
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Appendix A. Identification and analysis of regions of interest in
Alzheimer’s disease dementia

This appendix describes the analyses performed on the selected
regions of interest (ROIs) (see Section 2.3) using generalized linear
models (GLMs) with a Gaussian link function. The objective was to
investigate brain metabolism values across diverse phenotypic groups.
Additionally, we assessed the influence of variations in standardized
uptake value ratios (SUVRs) relative to disease progression.

Firstly, the statistical associations of the SUVR values aggregated in
the selected ROIs were explored using the GLM defined by the following
equation:

𝐲SUVR = 𝛽0 + 𝛽1 ⋅ 𝐱age + 𝛽2 ⋅ 𝐱sex + 𝛽3 ⋅ 𝐱yschool + 𝛽4 ⋅ 𝐱dementia + 𝜀 , (A.1)

here 𝐲SUVR ∈ R𝑛 correspond to the SUVR values at baseline for
given ROI, being 𝑛 the number of samples; 𝛽0 is the intercept;

{1∣2∣3} represents the coefficients of the model for each of its terms;
{𝑎𝑔𝑒∣𝑠𝑒𝑥∣𝑦𝑠𝑐ℎ𝑜𝑜𝑙} ∈ R𝑛 are the covariates of the model (age, sex, and years
f formal education); 𝐱𝑑𝑒𝑚𝑒𝑛𝑡𝑖𝑎 ∈ R𝑛 is the variable of interest identifying
he individuals with a diagnosis of dementia; and 𝜺 ∈ R𝑛 corresponds
o the model error. For this model, all baseline acquisitions belonging
o subjects with a diagnosis of healthy control (HC) or dementia were

elected.

http://www.fnih.org
https://adni.loni.usc.edu/
https://github.com/FernandoGaGu/Multi-task-Deep-Learning-XAI
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Fig. C.1. Absolute value of the attributions assigned in each of the tasks for each of the regions of interest (ROIs) analyzed. For each task, the attributions allocated to each ROI
have been sorted in descending order. The vertical red line shows the cutoff point for the top ten ROIs listed in Table C.1.
Secondly, we assessed whether changes in brain metabolism at two
years, defined as ∆SUVR (see Section 2.3), were related to progression
from mild cognitive impairmen (MCI) to dementia at two years. For
this purpose, we selected all baseline observations of individuals with
a diagnosis of MCI, and formulated the following GLM :

𝐲∆SUVR = 𝛽0 + 𝜷⊺
covar ⋅ 𝐗covar + 𝛽pMCI ⋅ 𝐱pMCI + 𝜀 , (A.2)

where, for simplicity, we have expressed the covariates age, sex and
years of education in matrix form (i.e., 𝜷covar ∈ R3×1, and 𝐗covar ∈
R3×𝑛).

Finally, we extended the above formulation to explore how varia-
tions in MMSE over a two years period (defined as 𝛥MMSE =
(MMSE(2-years) − MMSE(baseline))) were related to ∆SUVR:

𝐲∆SUVR = 𝛽0 + 𝜷⊺
covar ⋅ 𝐗covar + 𝛽MMSE ⋅∆MMSE + 𝜀 , (A.3)

Analyses were performed using the statmodels (v0.14.0) (Seabold
and Perktold, 2010) library in Python (v3.11.5).

Appendix B. Parameterization of the feed forward networks archi-
tecture

This appendix details the hyperparameters of the feed forward
network (FFN) models that were subjected to the hyperparameter
optimization (HPO) as outlined in Section 2.4. The hyperparameters
were parameterized and sampled as detailed below, and optimized by
Bayesian optimization using a tree structured parzen estimator (TPE)
as a surrogate model.

Firstly, the number of hidden layers was sampled from a uniform
distribution with integer values bounded to the interval [3, 10], denoted
11
as  (𝑖𝑛𝑡)(3, 10). The number of units per layer 𝑙, 𝑛(𝑙), was determined
through equations:

𝑛(𝑙) =
(

1
𝛽

)(𝑙)
⋅ init_layers (B.4)

and

𝑛(𝑙) = init_layers − 𝛼 ⋅ (𝑙) (B.5)

where the utilization of Eq. (B.4) (representing an exponential decay)
or Eq. (B.5) (constituting a linear decrease) was determined by a
binomial distribution, and 𝛽 ∼  (0.8, 5.0) and 𝛼 ∼  (𝑖𝑛𝑡)(25, 250) were
also considered during the optimization. Furthermore, the value of
init_layers was sampled from  (𝑖𝑛𝑡)(250, 1000).

Other hyperparameters considered included the batch size, sampled
from a categorical distribution over the set {16, 32, 48, 64}; the learning
rate, given by  (10−7, 10−3); the utilization of batch normalization; and
the dropout rate, which was determined by applying the same principle
as with Eq. (B.5).

Appendix C. Integrated gradient attributions

This appendix provides detailed information on the application
of the Integrated Gradients (IG) method as described in Section 2.6.
Table C.1 presents the regions to which the model assigned greater
importance, while Fig. C.1 illustrates the distribution of importance
attributed to each of the regions of interest (ROIs) across the analyzed
tasks. These results reveal a skewed distribution in attribution across
different regions, indicating that a few areas accumulated the majority
of the model’s attributions, while others received comparatively lower

attributions.
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Table C.1
Top ten regions of interest (ROIs) with the highest attribution for each of the modeled tasks using the CNN-A1 multi-task model (see Section 2.4).
𝛥𝑆𝑈𝑉 𝑅 < 20tha 𝛥𝑆𝑈𝑉 𝑅 > 80tha pMCIb sMCIb Dementiac Healthyc

ROI Attr. ROI Attr. ROI Attr. ROI Attr. ROI Attr. ROI Attr.

PCC (L) 1.00 PCC (L) 1.00 PCC (L) 1.00 PCC (L) 1.00 PCC (L) 1.00 PCC (L) 1.00
PUT (L) 0.68 PUT (L) 0.66 PUT (L) 0.87 PUT (L) 0.84 PUT (L) 0.95 PUT (L) 0.69
PCC (R) 0.60 PCC (R) 0.60 PAL (L) 0.67 PAL (L) 0.72 PAL (L) 0.65 PCC (R) 0.61
PAL (L) 0.54 PAL (L) 0.54 PCC (R) 0.62 PCC (R) 0.63 PCC (R) 0.63 PAL (L) 0.54
THA (L) 0.40 THA (L) 0.40 THA (L) 0.49 THA (L) 0.53 THA (L) 0.46 PAL (R) 0.43
PAL (R) 0.38 PAL (R) 0.38 PAL (R) 0.41 CUN (L) 0.40 PAL (R) 0.44 THA (L) 0.39
CUN (L) 0.36 CUN (L) 0.36 IFGoperc (L) 0.41 MCC (L) 0.40 THA (R) 0.37 CUN (L) 0.36
PCUN (L) 0.35 PCUN (L) 0.35 MCC (L) 0.39 PAL (R) 0.38 CUN (L) 0.36 PCUN (L) 0.35
ANG (L) 0.32 ANG (L) 0.32 IFGorb (L) 0.37 IFGorb (L) 0.37 HIP (L) 0.35 THA (R) 0.32
LING (L) 0.29 LING (L) 0.29 CUN (L) 0.36 IFGoperc (L) 0.37 PCUN (L) 0.35 IFGoperc (L) 0.31

The table shows the attributions scaled to the range [0, 1] for each of the input data and for each of the modeled tasks. The top ten ROIs with the highest attribution in each of
the tasks are shown.
a Task of predicting changes in brain metabolism, 𝛥𝑆𝑈𝑉 𝑅. In this case, the average attribution of all the modeled ROIs was considered. Information from subjects with greater
decrements (𝛥𝑆𝑈𝑉 𝑅 < 20th) or stability (𝛥𝑆𝑈𝑉 𝑅 > 80th) was used as input data to calculate attributions.
b Task of identifying individuals with mild cognitive impairment (MCI) who progress to dementia (pMCI) or remain stable (sMCI) at two years. Information from pMCI or sMCI
individuals was used as input data for calculating attributions.
c Task of identifying the current diagnosis. Information from healthy or dementia individuals was used as input data for calculating attributions.
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